

Calculation Policy of:

Wrockwardine Wood Infant School \& Nursery

\&

Wrockwardine Wood C.E. Junior School

Children learn by:

- doing it (concrete)
- seeing it (abstract)
- recording it (communication)
- remembering it (visual)

Date of policy: February 2016
Reviewed: September 2017
Review date: September 2018

Contents

EYFS
Year $1 \quad$ Addition \& Subtraction
Year $2 \quad$ Addition \& Subtraction
Year $3 \quad$ Addition \& Subtraction
Year $4 \quad$ Addition \& Subtraction
Year $5 \quad$ Addition \& Subtraction
Year $6 \quad$ Addition \& Subtraction

Multiplication \& Division

Videos to support learning:

Multiplication https://www.ncetm.org.uk/resources/40530	Number facts KSt - Multiple Representations of Multiplication KS1- The commutative law for multiplication Lower KS2 - Grid multiplication as an interim step Upper KS2 - Moving from grid to a column
Algebra https://www.ncetm.org.uk/resources/43649	KS1 - Number bonds to ten KS1 - Consolidation and practice (Addition and Subtraction) KS1 - Reinforcing Table Facts KS1 - Rapid recall of multiplication facts
KS1 - Look at 'missing numbers' KS2 - Equations and substitution KS3 - Factorising*	Number and Place value https://www.ncetm.org.uk/resources/40534 KS1 - Counting in steps of one and ten KS1 - Partitioning in different ways
KS1 - Addition and Subtraction KS1 - Using resources to develop fluency and understanding KS2 - Partitioning (subtraction)	
Fractions https://www.ncetm.org.uk/resources/43609	Division Kttps://www.ncetm.org.uk/resources/43589
KS2 - Udding fractions and mixed numbers array to add fractions KS2 - Bar model dividing by fractions KS3 - Fraction wall to add fractions*	KS1- Sharing and grouping KS 2 - Place value counters for division KS 3 - Group working on problems*
Subtraction https://www.ncetm.org.uk/resources/40532	Multiplicative reasoning https://www.ncetm.org.uk/resources/43669
Lower KS2 - Partitioning Lower KS2 - Discussing Subtraction Strategies Upper KS2- Column Subtraction	KS2 - Bar model for multiplication KS3 - Ratio and proportion*

Key representations to support conceptual understanding of addition and subtraction．

1	2	3	4	5	δ	7	8	9	10
11	12	13	14	15	518	17	18	18	20
21	2	23	2	d 25	58	21	\％	\％	30
3	32	33	3／4	35	58	37	\％	\％	40
41	42	43	41	45	54	47	4	4	50
9	5	5	5	5	5	5	5	5	50
51	52	63	ब 4	d 85	5 \％	67	\％	\％	70
11	n	13	入	15	5 \＄	7	N	n	80
\％1	82	83	就	185	5 部	\％1	络	\％	30
\1	3	$3)$	29	125	5 y	17	5	1	100

$8+?=10$

58585 Besec
$15+5=20$

Addition \& Subtraction EYFS

Statutory requirements

Guidance

Progression
Early Learning Goal - Number
Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.
Early practical experiences to include number rhymes, songs, stories and daily counting opportunities.
In practical activities and discussion, begin to use the vocabulary involved in addition and subtraction.
Add, more, and, make, sum, total, altogether, score, double, one more, two more, ten more, how many more to make? How many more is...than...? Take away, leave, how many are left/left over? How many have gone? One less, two less, ten less, how many fewer is ... than...?, difference between, is the same as

- Understand that the total gets bigger when something is added.
- Add two single-digit numbers.
- Understand that addition is commutative.

During 30-50 months the children have begun to graphically represent using fingers, marks on paper or pictures. They can compare two groups of objects, saying when they have the same number and have shown an interest in solving number problems. They can compare two groups of objects, saying when they have the same number.
Within 40-60 months the children relate addition to combining two groups and subtraction to taking away, finding the total number of items in two groups by counting all of them. In practical activities and discussion, they begin to use the vocabulary involved in adding and subtracting and record, using marks that they can interpret and explain. Working within the Early learning goal the children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Addition and Subtraction

Representations
to support mental and written calculations

How many would there be if 1 more duck swam over?

Jane had 3 bears. She was given 2 more.
How many does she have now?

	Addition	Subtraction
Mental Calculations	- Find the total number of items in two groups by counting all of them. - Say the number that is one more than a given number. - Partition a number in different ways and recombine to understand the total stays the same. e.g. 5 - Say the number which is one less than a given number. - Counting on, on fingers, orally, and number lines. - Make decisions about how to solve a problem	- Find one less from a group of up to five objects, then ten objects. - Remove objects from a small group and count how many are left. - Know that the answer gets smaller when objects are taken away. - Say the number which is one less than a given number. - Counting back on fingers, orally, and number lines. - Make decisions about how to solve a problem
Written Calculations	Writing numerals. Record using marks and pictures they can interpret and explain.	

Addition \& Subtraction Year 1

Statutory
requirements

Pupils should be taught to:
requirements \quad - read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs

- represent and use number bonds and related subtraction facts within 20
- add and subtract one-digit and two-digit numbers to 20 , including zero
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$.
Guidance
Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, $9+7=16 ; 16-7=9 ; 7=16-9$). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.
Pupils combine and increase numbers, counting forwards and backwards.
They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.
Progression During the Foundation Stage, children related addition to combining two groups and subtraction to taking away, engaging in practical activities. In Year 1 , children use mathematical statements to record addition and subtraction. They read, interpret and write the symbols,+- and $=$. Through practice of addition and subtraction, children learn the number trios for numbers to $20(8+5=13,13-8=5,13-5=8)$. They use different strategies to help them derive number facts, such as adding numbers in any order, or finding a difference by counting up.

	Addition		Subtrac
Representations to support mental and written calculations			

	Addition and Subtraction	
	Counting and Combining sets of Objects Combining two sets of objects (aggregation) which will progress onto adding on to a set (augmentation) Understanding of counting on with a number track. Understanding of counting on with a numberline (supported by models and images). Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10. Recognise place value of numbers to and beyond 20	Understand subtraction as take-away. Taking away objects from a set and counting how many are left using real objects. Understanding of counting back with a number track and a number line. Regular counting on and back from different numbers in 1s and in multiples of 2,5 and 10. Progress from using number lines with every number shown to number lines with significant numbers shown. Understand subtraction as finding the difference. To be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation.

	Solve one-step problems that involve addition and subtraction,
Mental Calculation s	
Written Calculation s	Graphic Representation $\quad \pm=$ signs and missing numbers Solve one-step problems that involve addition and subtraction, Children to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'. They should become used to seeing the $=$ sign in in different positions. $\begin{aligned} & \text { e.g. } 7=\square-9 ; 20-\square=9 ; 15-9=\square ; \square-\square=11 ; 16-0=\square \\ & 2=1+1 \\ & 2+3=4+1 \end{aligned}$ Missing numbers to be placed in all possible places. $\begin{array}{llll} 3+4=\square & \square=3+4 & 7-3=\square & \square-3= \\ 3+\square=7 & 7=\square+4 & 7-\square=4 & 17-13 \end{array}$ Subtract one digit and two digit numbers to 20, including zero.

Addition \& Subtraction Year 2

Statutory requirements	Pupils should be taught to: - solve problems with addition and subtraction: - use concrete objects and pictorial representations, including those involving numbers, quantities and measures - apply their increasing knowledge of mental and written methods - recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
Guidance	Pupils extend their understanding of the language of addition and subtraction to include sum and difference. Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using $3+7=10 ; 10-7=3$ and $7=10-3$ to calculate $30+70=100 ; 100-70=30$ and $70=100-30$. They check their calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, $5+2+1=1+5+2=1+2+5$). This establishes commutativity and associativity of addition. Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.
Progression	Children use mental methods to solve problems using addition and subtraction, as well as using objects and pictorial representations. They begin to record addition and subtraction in columns, reinforcing their knowledge of place value. They independently use addition and subtraction facts to 20, and this helps them derive number facts up to 100 , such as seeing the parallels between $2+6=8$ and $20+60=80$. They add and subtract different combinations of numbers, including two two-digit numbers. They understand the inverse relationship between addition and subtraction (that one operation undoes the other), and use this to check their calculations.

	Addition	Subtraction
Mental Calculations And Jottings	Count on regularly in steps of $2,3,5$ and 10. Counting on in tens from any number, leading to adding of multiples of 10. Practise addition to 20 to become increasingly fluent. They should use concrete objects such as bead strings and number lines to explore missing numbers $45+=50$. Using known facts to derive others If I know: 2+3 = 5 I also know: $\begin{aligned} & 3+2=5 \\ & 20+30=50 \\ & 30+20=50 \\ & 50-30=20 \\ & 50-20=30 \end{aligned}$ Using the bar model Continue to use the bar model, as well as images in the context of measures. Missing number problems $\begin{aligned} & \text { e.g } 14+5=10+\square \quad 32+\square+\square=100 \quad 35=1+\square+5 \\ & \text { e.g. } 52-8=\square ; \square-20=25 ; 22=\square-21 ; 6+\square+3=11 \end{aligned}$ Use a range of representations (also see Y1). Continue to use number lines to develop understanding of: Counting on in tens and ones $23+12=23+10+2$	Count back regularly, in steps of 2, 3,5 and 10. Count back in tens from any number, leading to subtracting multiples of 10. Practise subtraction to 20 to become increasingly fluent. Using known facts to derive others If I know: 2+3 = 5 I also know: $\begin{aligned} & 3+2=5 \\ & 20+30=50 \\ & 30+20=50 \\ & 50-30=20 \\ & 50-20=30 \end{aligned}$ Using the bar model Continue to use the bar model, as well as images in the context of measures. Missing number problems $\begin{aligned} & \text { e.g } 14+5=10+\square \quad 32+\square+\square=100 \quad 35=1+\square+5 \\ & \text { e.g. } 52-8=\square ; \square-20=25 ; 22=\square-21 ; 6+\square+3=11 \end{aligned}$ Use a range of representations (also see Y1). Practical partioning of 2 digit numbers Bundles of straws or dienes to represent and partition 2 digit numbers.

Partition and bridge through 10.

The steps in addition often bridge through a multiple of 10
e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5.
$8+7=15$

Add 9 or 11 by adding 10 and adjusting by 1

Add 9 by adding 10 and adjusting by 1
$35+9=44$

Use a range of number squares to explore patterns in calculations74

$+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used.

Learn to check their calculations, by using the inverse.
Continue to see addition as both combining groups and counting on.
Use structured apparatus to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$.

Vocabulary

+, add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, Tens, ones, partition

Near multiple of 10 , tens boundary, More than, one more, two more... ten more... one hundred more

```
Continue to use number lines to develop understanding of: Counting back in tens and ones, take-away and difference.
\(37-12=37-10-2\)
\(=27-2\)
\(=25\)
```


Subtract 9 or 11 by adjusting

Use a range of number squares to model calculations such as $74-11,77$ -9 or $36-14$, where partitioning or adjusting are used.

Learn to check their calculations, by using the inverse.
Continue to see subtraction as both take away and finding the difference, and should find a small difference by counting up.

Use structured apparatus to model partitioning into tens and ones and learn to partition numbers in different ways.

Vocabulary

Subtraction, subtract, take away, difference, difference between, minus
－Noticing what happens when you count in tens（the digits in the ones column stay the same）
－Odd＋odd＝even；odd＋even＝odd；etc
－show that addition of two numbers can be done in any order （commutative）and subtraction of one number from another cannot
－Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems．

Some Key Questions

How many altogether？How many more to make．．．？How many more is．．． than．．．？How much more is．．．？
Is this true or false？
If I know that $17+2=19$ ，what else do I know？（e．g． $2+17=19 ; 19-17=$ $2 ; 19-2=17 ; 190-20=170$ etc）．
What do you notice？What patterns can you see？

Towards a Written Method

Partitioning in different ways and recombining
$47+25$

47

相相䀠吅

25

$60+12$

Leading to exchanging：

Tens，ones，partition
Near multiple of 10，tens boundary
Less than，one less，two less．．．ten less．．．one hundred less
More，one more，two more．．．ten more．．．one hundred more

Generalisation

－Noticing what happens when you count in tens（the digits in the ones column stay the same）
－Odd－odd＝even；odd－even＝odd；etc
－show that addition of two numbers can be done in any order （commutative）and subtraction of one number from another cannot
－Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems．This understanding could be supported by images such as this．

 （－）（）；）（）； （）（）：）（）：

$$
15+5=20
$$

Some Key Questions How many more to make．．．？How many more is．．． than．．．？How much more is．．．？How many are left／left over？How many fewer is．．．than．．．？How much less is．．．？

Is this true or false？
If I know that $7+2=9$ ，what else do I know？（e．g． $2+7=9 ; 9-7=2 ; 9-2$ $=7 ; 90-20=70 \mathrm{etc}$ ）．

What do you notice？What patterns can you see？

Towards a Written Method

Partioining to subtract．using structured apparatus．
75－42
Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers．
The numbers may be represented with Dienes apparatus．E．g．75－42

Addition \& Subtraction Year 3

	Pupils should be taught to: - add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction - estimate the answer to a calculation and use inverse operations to check answers - solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.		
Guidance	Pupils practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100. Pupils use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see Mathematics Appendix 1).		
Progres	In Year 3, children practise mentally adding and subtracting combinations of numbers, including three-digit numbers. When using written methods for addition and subtraction, children learn to write the digits in columns, using their knowledge of place value to align the digits correctly. Children begin to use estimation to work out the rough answer to calculations in advance, and use inverse operations to check their final answers - for example, checking $312+43=355$ by working out $355-43=312$. - Children should practise solving varied addition and subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100. - Children should use their understanding of place value and partitioning, and practise using columnar addition and subtraction with increasingly large numbers up to three digits to become fluent (see National Curriculum Appendix 1).		
	Addition	Subtraction	
Representation s to support mental and written calculations	Use a range of concrete, pictorial and abstract representations, including those below Partitioning and recombining	Introduce transition from concrete place value representations, (e.g. dienes or straws), to pictorial - such as place value counters or money. 132 in dienes 132 in place value counters.	rstanding of All of these representations still comprise the amount of 36 . Revert to concrete manipulatives and expanded methods whenever difficulties arise

	Addition	Subtraction
Mental Calculations	Add and subtract mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds Common mental calc - partitioning - doubles and - use number par - adding near adjusting - using pattern calculations - using known - bridging thro - complement	ation strategies: recombining ars to 10 and 100$\|$Use known number facts and place value to subtract Continue as in Year but with appropriate numbers, e.g. 97 $-15=72$
Written Calculations	Add numbers with up to three-digits, using formal written (columnar) methods. Partition all numbers and recombine, starting with TU + TU, then HTU + TU, e.g $\begin{aligned} 247+125 & =247+100+20+5 \\ & =347+20+5 \\ & =367+5 \\ & =372 \end{aligned}$ Add to three digits, using physical and abstract representations (e.g. straws, dienes, place value counters, empty number lines)	Add and subtract numbers with up to three digits, using formal written methods of columnar subtraction. $\begin{aligned} & (1) \text { Extended columnar - } \\ & \text { no exchange } \\ & \text { Extended method } 87-53= \\ & \begin{array}{l} 80 \text { and } 7 \\ \frac{-50 \text { and } 3}{30 \text { and } 4}=34 \\ \hline \end{array} \end{aligned}$ (2) Extended columnar with exchange: 87-58 becomes $\begin{array}{r} 70+17 \\ -50+8 \\ \hline 20+9 \\ \hline \end{array}$

Vocabulary	Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange See also Y1 and Y2	Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2
Generalisations	Noticing what happens to the digits when you count in tens and hundreds. Odd + odd = even etc (see Year 2) Inverses and related facts - develop fluency in finding related addition and subtraction facts. Develop the knowledge that the inverse relationship can be used as a checking method. Key Questions What do you notice? What patterns can you see? When comparing two methods alongside each other: What's the same? What's different?	Noticing what happens to the digits when you count in tens and hundreds. Odd - odd = even etc (see Year 2) Inverses and related facts - develop fluency in finding related addition and subtraction facts. Develop the knowledge that the inverse relationship can be used as a checking method. Key Questions What do you notice? What patterns can you see? When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line

Addition \& Subtraction Year 4

Statutory requiremen	Pupils should be taught to: - add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.		
Guidance	Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1).		
Progr	Children extend previous years' work by adding and subtracting numbers with up to four digits, using mental and written methods, including columnar addition and subtraction. They keep practising mental methods of addition and subtraction as well as written methods, performing calculations increasingly quickly and confidently. They continue using estimation as well as inverse operations to help check answers. Children should continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency		
	Addition	Subtraction	
Representations to support mental and written calculations		Use physical and / or pictorial represe alongside columnar methods. Ask: What Compare and discuss the suitability of Pupils decide which operations and m	Dienes blocks or place value counters can be used to model calculations and the under-lying place value concepts.

	Addition		Subtraction
Mental Calculation s	Practise mental methods with increasingly large numbers Consolidate partitioning and re-partitioning Use compensation for adding too much/little and adjusting Use straws, Dienes, place value counters, empty number lines etc. I know that $63+29$ is the same as $63+30-1$	$\begin{aligned} 55+37 & =55+30+7 \\ & =85+7 \\ & =92 \end{aligned}$ Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging though ten, hundred Complementary addition	Continue to practise mental methods with increasingly large numbers to aid fluency. (From Non-Statutory Guidance). Methods to support fluent calculation and encourage efficiency of method: - Find a small difference by counting up. E.g. 5003-4996 - Subtract nearest multiple of ten and adjust. - Partition larger numbers Whenever possible, children should be encouraged to visualise number lines and other basic, supporting representations to promote fluent work without jottings. This could be done using an empty number line. Children should recall and use number facts to reduce the number of steps.
Written Calculation s	Add numbers with up to four digits, using the formal written Add three digit numbers using columnar method and then move Include decimal addition for money	lumnar) method onto 4 digits. n method difficult	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. Build on formal, extended method (See Year 3) using exchange wherever necessary. Continue to use representations and manipulatives to develop understanding of place value. Apply understanding of subtraction with larger integers to that of decimals in context of money and measures. (See Year 5.)
Vocabulary	add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.		
Generalisati ons	Investigate when re-ordering works as a strategy for subtraction. Eg. 20-3-10 = 20-10-3, but 3-20-10 would give a different answer. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?		

Addition \& Subtraction Year 5

Statutory requirements	Pupils should be taught to: - add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	
Guidance	Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1). They practise mental calculations with increasingly large numbers to aid fluency (for example, $12462-2300=10162$).	
Progression	Children use columns in written addition and subtraction, accurately adding and subtracting numbers with more than four digits. They use mental methods to add and subtract increasingly large numbers, and use rounding to check their answers. With support they choose appropriate operations and methods, and work out the level of accuracy required to answer a particular problem. They will continue to develop this work in Year 6. Children should practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency. They should practise mental calculations with increasingly large numbers to aid fluency	
	Addition	Subtraction
Representations to support mental and written calculations		Use physical and pictorial representations to stress the place value relationships between money, decimals and whole numbers. A place value mat such as the this one could be used, moving away from the traditional: Hundreds, tens and ones model used in Lower KS2 and KS1.

	Addition	Subtraction
Mental Calculations	- Add numbers mentally with increasingly large numbers, e.g. $12462+2300=14762$ - Mentally add tenths, and one-digit numbers and tenths - Add decimals, including a mix of whole numbers and decimals, decimals with different numbers of places, and complements of 1 (e.g. $0.83+0.17=1$) Children use representation of choice Refer back to pictorial and physical representations when needed. Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging though ten, hundred, tenth Complementary addition	- Subtract numbers mentally with increasingly large numbers. E.g. $12462-2300=10162$ - Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. - Pupils practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, 1-0.17=0.83). - Pupils mentally add and subtract tenths, and one-digit whole numbers and tenths.
Written Calculations	Add whole numbers with more than four digits, using the formal written (columnar) method Add three digit numbers using columnar method and then move onto 4 digits. Include decimal addition for money $\begin{array}{r} £ 563.14 \\ +£ 207.88 \\ \hline £ 771.02 \\ \hline 111 \\ \hline \end{array}$ Revert to expanded methods if children find formal calculation method difficult.	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). (Pupils) practise adding and subtracting decimals. Begin with three-digit numbers using formal, columnar method; then move into four-digit numbers. As in Year 4, compare physical and / or pictorial representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different? Compare and discuss the suitability of different methods, (mental or written), in context. Revert to expanded methods whenever difficulties arise
Vocabulary	tens of thousands boundary, Also see previous years	
Generalisatio n	Sometimes, always or never true? The difference between a number and its reverse What do you notice about the differences between consecutive square numbers? Investigate $a-b=(a-1)-(b-1)$ represented visually. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How	will be a multiple of 9 . do you know?

Addition \& Subtraction Year 6

Addition

Subtraction

Key representations to support conceptual understanding of multiplication and division

Multiplication \& Division EYFS

Statutory requirements	Early Learning Goal - Number Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.
Guidance	Early practical experiences to include number rhymes, songs, stories and daily counting/grouping opportunities. In practical activities and discussion, use the vocabulary involved in multiplication: Sort, group, set, match, same, double, halve, groups of, sets of, lots of halve, share, share equally, one each, two each etc., group in pairs, left, left over.
Progression	Within 30 -50 months the children have begun to graphically represent using fingers, marks on paper or pictures. They show an interest in solving number problems. They compare two groups of objects, saying when they have the same number and separate a group of three or four objects in different ways, beginning to recognise that the total is still the same. Within 40 -60 months they engage in practical activities and discussion, recording, using marks that they can interpret and explain. Working within the Early learning goal the children count reliably with numbers from one to 20, They solve problems, including doubling, halving and sharing. Multiplication
Representations to support mental and written calculations	Use a range of concrete and pictorial representations, including:

	Multiplication	Division
Mental Calculations	Early practical experiences to include number rhymes, songs, stories and daily counting/grouping opportunities. In practical activities and discussion, use the vocabulary involved in multiplication: Sort, group, set, match, same, double, halve, groups of, sets of, lots of. - Sing rhymes using objects to model grouping in different ways. - Group objects in 2's. - Jump along number lines in jumps of 1 and 2. Start at 2 and jump 2 what happens? - Practical problems involving doubling	Early practical experiences to include number rhymes, songs, stories and daily counting opportunities. In practical activities and discussion, use the vocabulary involved in division: Halve, share, share equally, one each, two each etc., group in pairs, left, left over. - Make and compare sets/groups of objects saying when they have the same number. - Separate a group of up to 6 objects in different ways to recognise that the total is still the same Practical problems involving sharing and halving - Share in many practical contexts. (Use cross curricular links) - Understand the language of half. Many experiences of cutting and slicing objects, towers of cubes, pieces of paper into half to understand that the 2 halves have to be equal. - Solve practical problems involving halving. e.g. half of the 8 biscuits have gone. How many are left?

Multiplication \& Division Year 1

Statutory requirements	Pupils should be taught to: Solve one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Count in multiples of twos, fives and tens (Children make connections between arrays, number patterns, and counting in twos, fives and tens).
Guidance	Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities. They make connections between arrays, number patterns, and counting in twos, fives and tens. Pupils connect halves and quarters to the equal sharing and grouping of sets of objects
Progression	In Year 1, children are introduced to the concepts of multiplication and division, although they will not use the standard signs (\times and \div) until Year 2. In practical activities, using arrays and physical objects such as blocks, children solve multiplication and division problems using small quantities. With support, children investigate the links between arrays, number patterns and their experience of counting in twos, fives and tens.
Representations to support mental and written calculations	Use a range of concrete and pictorial representations, including

Mental Strategies

Regular counting on and back from different numbers in 1s and in multiples of 2,5 and 10.

- Counting in 2 s e.g. counting socks, shoes, animal legs...
- Counting in 5 s e.g. counting fingers, fingers in gloves, toes ...
- Counting in 10 s e.g. counting fingers,toes...

Washing line, and other practical resources for counting. Concrete objects. Numicon; bundles of straws, bead strings.

Memorise and reason with numbers in 2,5 and 10 times tables

Represent odd and even numbers. This will help them to understand the pattern in numbers.

Understand multiplication as scaling in terms of double and half. (e.g. that tower of cubes is double the height of the other tower)

Understand multiplication is related to doubling and combing groups

 of the same size (repeated addition)Recall doubles up to 10.
Begin to understand multiplication as scaling in terms of double and half.
(e.g. that tower of cubes is double the height of the other tower)

Problem solving with concrete objects (including money and

 measures)
Recognise odd and even numbers

Opportunities to reason about what they notice in number patterns.

Write as a number pattern (e.g.5,10,15...;2,4,6...;10,20,30...)

Use Cuisenaire and bar method to develop the vocabulary relating to 'times' Pick up five, 4 times

Vocabulary

Ones, groups, lots of, doubling

Regular counting on and back from different numbers in 1s and in multiples of 2,5 and 10. Children should be given opportunities to reason about what they notice in number patterns

Recognise the number of groups counted to support understanding of relationship between multiplication and division.

Understand division as both sharing and grouping.

Sharing - 6 sweets are shared between 2 people. How many do they have each?

Grouping-
How many 2's are in 6 ?

Use objects to group and share amounts to develop understanding of division in a practical sense.
E.g. using Numicon to find out how many 5 's are in 30 ? How many pairs of gloves if you have 12 gloves?
Explore finding simple fractions of objects, numbers and quantities.
E.g. 16 children went to the park at the weekend. Half that number went swimming. How many children went swimming?

Vocabulary

- share, share equally, one each, two each..., group, groups of, lots of, array

Generalisations

- True or false? I can only halve even numbers.

	repeated addition groups of, lots of, times, columns, rows longer, bigger, higher etc times as (big, long, wide ...etc) Generalisations Understand 6 counters can be arranged as $3+3$ or $2+2+2$ Some Key Questions Why is an even number an even number? What do you notice? What's the same? What's different? Can you convince me? How do you know?	- Grouping and sharing are different types of problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing. Some Key Questions - How many groups of...? - How many in each group? - Share... equally into... - What can do you notice?
Written Calculations	It is important to use a range of models to develop understanding of multiplication, and that children make connections between arrays, number patterns, and counting in twos, fives and tens. Although there is not statutory requirement for written multiplication in Year 1, we encourage children to begin to write as repeated addition sentences in preparation for Year2 E.g. $2+2+2+2=8$	It is important to use a range of models to develop understanding of division and that children make connections between sharing, grouping, multiplication and division.

Use jottings to develop an understanding of doubling two digit numbers. 16

106

x2 $x 2$
$20+12=$

Vocabulary

multiple, multiplication array, multiplication tables / facts
groups of, lots of, times, columns, rows

Generalisation

Commutative law shown as an array
Repeated addition can be shown mentally on a number line Inverse relationship between multiplication and division. Use an array to explore how numbers can be organised into groups.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Know and understand sharing and grouping- introducing children to the \div sign.
Children should continue to use grouping and sharing for division using practical apparatus, arrays and pictorial representations.

$\div=$ signs and missing numbers

$6 \div 2=\square$	$\square=6 \div 2$
$6 \div \square=3$	$3=6 \div \square$
$\square \div 2=3$	$3=\square \div 2$

$\div \nabla=3 \quad 3=\square \div \nabla$

Grouping using a numberline

Group from zero in jumps of the divisor to find our 'how many groups of 3 are there in 15?'.
$15 \div 3=5$
Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array - what do you see?
Children should be given opportunities to find a half, a quarter and a third of shapes, objects, numbers and quantities. Finding a fraction of a number of objects to be related to sharing.

They will explore visually and understand how some fractions are equivalent - e.g. two quarters is the same as one half.

Use children's intuition to support understanding of fractions as an answer to a sharing problem.

34

Vocabulary

group in pairs, 3s ... 10s etc

equal groups of
divide, \div, divided by, divided into, remainder

Generalisations

Notice how counting in multiples if 2,5 and 10 relates to the number of groups you have counted (introducing times tables)
An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)
Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.

		Some Key Questions How many 10s can you subtract from 60? I think of a number and double it. My answer is 8 . What was my number? If $12 \times 2=24$, what is $24 \div 2$? Questions in the context of money and measures (e.g. how many 10p coins do I need to have 60p? How many 100 ml cups will I need to reach 600ml?)
Written	Expressing multiplication as a number sentence using x Using understanding of the inverse and practical resources to solve missing number problems.	Expressing division as a number sentence using \div and $=$ signs solving problems with missing numbers.

Multiplication \& Division Year 3

	Multiplication	Division
Mental Calculations	- recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables (and 2,5 and 10 multiplication tables from Y 2) - Use doubling to connect 2,4 and 8 multiplication tables - Develop efficient mental methods using commutativity and associativity - Derive related multiplication and division facts - calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods - Partitioning: multiply the tens first and then multiply the units, e.g. $57 \times 6=(50 \times 6)+(7 \times$ 6) $=300+42=342$ Ensure opportunities to learn The associative law: multiplication tables through use of $4 \times 12 \times 5=4 \times 512$ visual models, images and also rote $=20 \times 12$ learning. $=240$ The commutative law: $4 \times 12=12 \times 4$ $\begin{aligned} & 3 \times 2=60,6+3=2,6+2=3 \\ & 30 \times 2=60,60+3=20,20=60+3 \end{aligned}$	Pupils should be taught to recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. Pupils continue to practise their mental recall of multiplication tables in order to improve fluency. Pupils derive division and multiplication facts and gain an understanding of the relationship between the two.
Written Calculations	Developing written methods using understanding of visual images Developontothegrid method Give children opportunitiesfor children to explore this and deepen understanding using Dienes apparatus and placevaluecounters	Becoming moreefficient using a numberline. Children need to be able to partition the dividend in different ways. $48 \div 4=12$ Remainders $\begin{array}{cc} \hline \begin{array}{c} 49 \div 4 \\ +12 \mathrm{r} 1 \\ +40 \end{array} & +8 \\ 10 \text { groups } & +1 \\ \hline \end{array}$ Sharing- 49 shared between 4 . How many left over? Grouping - How many $4 s$ make 49. How many are left over?

	Towards the column method ... Answer: 144	New written methods can be modelled alongside mental or informal methods to ensure understanding.
Vocabulary	partition grid method inverse	See Y1 and Y2 inverse
Generalisations	Connecting $\times 2, x 4$ and $\times 8$ through multiplication facts Comparing times tables with the same times tables which is ten times bigger. If 4 x $3=12$, then we know $4 \times 30=120$. Use place value counters to demonstrate this. When they know multiplication facts up to $x 12$, do they know what $x 13$ is? (i.e. can they use 4×12 to work out 4×13 and 4×14 and beyond?) Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Inverses and related facts - develop fluency in finding related multiplication and division facts. Develop the knowledge that the inverse relationship can be used as a checking method. Some Key Questions Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have $£ 54$. How many $£ 10$ teddies can you buy?) What is the missing number? $17=5 \times 3+\ldots$ $-=2 \times 8+\overline{1}$

Multiplication \& Division Year 4

	Multiplication	Division
Mental Calculations	- Recall multiplication and division facts for tables up to 12×12 - Use place value, known and derived facts to multiply and divide mentally, including: - Multiplying by 0 and 1 - Dividing by 1 - Multiplying together 3 numbers, eg $2 \times 6 \times 5=10 \times 6=60$ - Recognise and use factor pairs and commutativity in mental calculations - Practise mental methods and extend this to three-digit numbers to derive facts, eg $600 \div 3=200$ can be derived from $2 \times 3=6$ Using the distributive law: $39 \times 7=30 \times 7+9 \times 7$ Using the associative law: Using facts and rules: $(2 \times 3) \times 4=2 \times(3 \times 4)$ $2 \times 6 \times 5=10 \times 6=60$ Counting in multiples of $6,7,9,25$ and 1000, and steps of $1 / 100$. Solving practical problems where children need to scale up. Relate to known number facts. (e.g. how tall would a 25 cm sunflower be if it grew 6 times taller?)	Pupils should be taught to: - recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations Pupils practise mental methods and extend this to three-digit numbers to derive facts. Children should experience regular counting on and back from different numbers in multiples of $6,7,9,25$ and 1000. Children should learn the multiplication facts to 12×12.
Written Calculations	Children to embed and deepen their understanding of the grid method to multiply up 2d x 2d. Ensure this is still linked back to their understanding of arrays and place value counters. - Multiply two-digit and three-digit numbers by a one digit number using formal written layout - Estimate before calculating - Ensure written methods build on / relate to mental methods (eg grid method)	Formal short division should only be introduced once children have a good understanding of division, its links with multiplication and the idea of 'chunking up' to find a target number (see use of number lines above) Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3 -digit dividends. E.g. fig 1

	- Introduce alongside grid and expanded column methods Key skills to support: - Know or quickly recall multiplication facts up to 12×12 - Understand the effect of multiplying by 10,100 or 1000 - Multiply multiples of 10 , eg 20×40 - Approximate, eg recognise that 72×38 is approximately equal $70 \times 40=2800$ and use this information to check whether answers are sensible.	
Vocabulary	Factor	see years 1-3 divide, divided by, divisible by, divided into share between, groups of factor, factor pair, multiple times as (big, long, wide ...etc) equals, remainder, quotient, divisor inverse
Generalisations	Children given the opportunity to investigate numbers multiplied by 1 and 0 . When they know multiplication facts up to $\times 12$, do they know what $\times 13$ is? (i.e. can they use 4×12 to work out 4×13 and 4×14 and beyond?) Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Generalisations True or false? Dividing by 10 is the same as dividing by 2 and then dividing by 5 . Can you find any more rules like this? Is it sometimes, always or never true that $\square \div \Delta=\Delta \div \square$? Inverses and deriving facts. 'Know one, get lots free!' e.g.: $2 \times 3=6$, so $3 \times 2=6,6$ $\div 2=3,60 \div 20=3,600 \div 3=200$ etc. Sometimes, always, never true questions about multiples and divisibility. (When looking at the examples on this page, remember that they may not be 'always true'!) E.g.: - Multiples of 5 end in 0 or 5. - The digital root of a multiple of 3 will be 3,6 or 9 . - The sum of 4 even numbers is divisible by 4 .

Multiplication \& Division Year 5

Statutory requirements	Pupils should be taught to: - identify multiples and factors, including find - know and use the vocabulary of prime num - establish whether a number up to 100 is p - multiply numbers up to 4 digits by a one- o - multiply and divide numbers mentally draw - divide numbers up to 4 digits by a one-digit - multiply and divide whole numbers and tho - recognise and use square numbers and cu - solve problems involving multiplication and - solve problems involving addition, subtraction - solve problems involving multiplication and
Guidance	Pupils practise and extend their use of the formal w tables and related division facts frequently, commit They use and understand the terms factor, multiple Pupils interpret non-integer answers to division by exp rounding (for example, $98 \div 4==24 \mathrm{r} 2=24=24.5$ Pupils use multiplication and division as inverses to by multiplying and dividing by powers of a 1000 in c Distributivity can be expressed as $a(b+c)=a b+a c$ They understand the terms factor, multiple and prim $270=3 \times 3 \times 9 \times 10=9^{2} \times 10$) . Pupils use and explain the equals sign to indicate e
Progression	- Children should practise and extend their use of the multiplication tables and related division facts, commit them to memory and use them - They should use and understand the terms factor - Children should interpret non-integer answers to decimals or by rounding - Children use multiplication and division as inverse multiplying and dividing by powers of a 1000 in converting between units such as kilometr
	Multiplication
Representations to support mental and written calculations	

	Multiplication	Division
Mental Calculations	Children should continue to count regularly, on and back, now including steps of powers of 10 . The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate. Children should continue to partition numbers in different ways. X by 10, 100, 1000 using moving digits ITP Use practical resources and jottings to explore equivalent statements (e.g. 4×35 $=2 \times 2 \times 35)$ Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning) Solving practical problems where children need to scale up. Relate to known number facts. Identify factor pairs for numbers	Children should count regularly using a range of multiples, and powers of 10, 100 and 1000 , building fluency. Children should practice and apply the multiplication facts to 12×12.
Written Calculations	Children continue to practise using an efficient formal method of multiplication:	Formal Written Methods Continued as shown in Year 4, leading to the efficient use of a formal method. The language of grouping to be used (see link from fig. 1 in Year 4) E.g. $1435 \div 6$ Children begin to practically develop their understanding of how express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1 ? How could I share this between 6 as well?)
Vocabulary	cube numbers prime numbers square numbers common factors prime number, prime factors composite numbers	see year 4 common factors prime number, prime factors composite numbers short division square number

		cube number inverse power of
Generalisations	Relating arrays to an understanding of square numbers and making cubes to show cube numbers. Understanding that the use of scaling by multiples of 10 can be used to convert between units of measure (e.g. metres to kilometres means to times by 1000) Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know? How do you know this is a prime number?	The = sign means equality. Take it in turn to change one side of this equation, using multiplication and division, e.g. Start: $24=\mathbf{2 4}$ Player 1: $\mathbf{4 \times 6 = 2 4}$ Player 2: $\mathbf{4 \times 6 = 1 2 \times 2}$ Player 1: 48 $\div \mathbf{2 = 1 2 \times 2}$ Sometimes, always, never true questions about multiples and divisibility. E.g.: - If the last two digits of a number are divisible by 4 , the number will be divisible by 4 . - If the digital root of a number is 9 , the number will be divisible by 9 . - When you square an even number the result will be divisible by 4 (one example of 'proof' shown left)

Multiplication \& Division Year 6

Statutory requirements	Pupils should be taught to: - multiply multi-digit numbers up to 4 digits - divide numbers up to 4 digits by a two-dig fractions, or by rounding, as appropriate - divide numbers up to 4 digits by a two-dig context - perform mental calculations, including with - identify common factors, common multipl - use their knowledge of the order of opera
Guidance	Pupils practise addition, subtraction, multiplication multiplication, and short and long division (see Ma They undertake mental calculations with increasin Pupils continue to use all the multiplication tables Pupils round answers to a specified degree of acc Pupils explore the order of operations using brack Common factors can be related to finding equivale
Progression	- Children should practise addition, subtraction, m short and long multiplication, and short and long divis - They should undertake mental calculations with - Children should continue to use all the multiplica - Children should round answers to a specified de - Children explore the order of operations using br - Common factors can be related to finding equiva
	Multiplication
Representations to support mental and written calculations	

	Multiplication	Division
Mental Calculations	Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5 ;(20-5) \times 3=45$	Mental Strategies Consolidate previous years.
	They should be encouraged to choose from a range of strategies to solve problems mentally: $-\quad$ Partitioning using $\times 10, \times 20$ etc $-\quad$ Doubling to solve $\times 2, \times 4, \times 8$ $-\quad$ Recall of times tables $-\quad U s e ~ o f ~ c o m m u t a t i v i t y ~ o f ~ m u l t i p l i c a t i o n ~$	Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. 20 $-5 \times 3=5 ;(20-5) \times 3=45$

	If children know the times table facts to 12×12. Can they use this to recite other times tables (e.g. the 13 times tables or the 24 times table)	
Written Calculations	Continue to refine and deepen understanding of written methods including fluency for using long multiplication $\begin{array}{r} 231 \\ 1342 \\ x \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \\ \hline \end{array}$	$\dot{\dagger}=$ signs and missing numbers Continue using a range of equations but with appropriate numbers Sharing and Grouping and using a number line Children will continue to explore division as sharing and grouping, and to represent calculations on a number line as appropriate. Quotients should be expressed as decimals and fractions Formal Written Methods - long and short division E.g. $1504 \div 8$ E.g. $2364 \div 15$
Vocabulary	See previous years common factor	see years 4 and 5
Generalisations	Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as BODMAS, or could be encouraged to design their own ways of remembering. Understanding the use of multiplication to support conversions between units of measurement. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as BODMAS, or could be encouraged to design their own ways of remembering. Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4 , it will also be divisible by 12 . (also see year 4 and 5 , and the hyperlink from the Y 5 column) Using what you know about rules of divisibility, do you think 7919 is a prime number? Explain your answer.

